Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии "на пальцах".
Тригонометрические функции связаны с соотношениями сторон в прямоугольном треугольнике:
Или в виде формул:
Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).
Тогда проекции радиуса на оси X и Y (OB и OA') равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.
Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC'D', построенных подобно исходному треугольнику OAB.
Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.
Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.
Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.
0° | 30° | 45° | 60° | 90° | sin | 0 |
|
|
|
1 | cos | 1 |
|
|
|
0 | tg | 0 |
|
1 | √3 | – | ctg | – | √3 | 1 |
|
0 |
---|
Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.
В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.
Например, значения тригонометрических функций для углов 270° и -90° равны.
Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.
Для математических вычислений тригонометрических функций используются углы не в градусах, а в радианах. Что такое радиан? Угол в радианах равен отношению длины дуги окружности к радиусу. Полный круг в 360° соответствует длине окружности 2πr. Следовательно 360° в радианах равно 2π, а 180° равно π радиан.
Как преобразовывать градусы в радианы? Нужно значение в градусах разделить на 180° и умножить на π.
Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.
Онлайн тренажер
|
Используя вышеописанные формулы:
тангенс угла выражается через отношение синуса к косинусу:
Соответственно котангенс выражается аналогично:
Также можно заметить, что произведение тангенса на котангес равно единице:
Иными словами, тангенс угла обратно пропорционален котангенсу угла и наоборот:
Используя теорему Пифагора в треугольнике, что сумма квадратов катетов равно квадрату гипотенузы
Сократим обе части на r2, получим:
Разделив обе части на квадрат синуса или квадрат косинуса, получим еще два основных тригонометрических тождества: